Symmetric Linearizations for Matrix Polynomials
نویسندگان
چکیده
منابع مشابه
Symmetric Linearizations for Matrix Polynomials
A standard way of treating the polynomial eigenvalue problem P (λ)x = 0 is to convert it into an equivalent matrix pencil—a process known as linearization. Two vector spaces of pencils L1(P ) and L2(P ), and their intersection DL(P ), have recently been defined and studied by Mackey, Mackey, Mehl, and Mehrmann. The aim of our work is to gain new insight into these spaces and the extent to which...
متن کاملTrimmed linearizations for structured matrix polynomials
We discuss the eigenvalue problem for general and structured matrix polynomials which may be singular and may have eigenvalues at infinity. We derive condensed forms that allow (partial) deflation of the infinite eigenvalue and singular structure of the matrix polynomial. The remaining reduced order staircase form leads to new types of linearizations which determine the finite eigenvalues and c...
متن کاملVector Spaces of Linearizations for Matrix Polynomials
The classical approach to investigating polynomial eigenvalue problems is linearization, where the polynomial is converted into a larger matrix pencil with the same eigenvalues. For any polynomial there are infinitely many linearizations with widely varying properties, but in practice the companion forms are typically used. However, these companion forms are not always entirely satisfactory, an...
متن کاملThe Conditioning of Linearizations of Matrix Polynomials
The standard way of solving the polynomial eigenvalue problem of degree m in n×n matrices is to “linearize” to a pencil in mn×mn matrices and solve the generalized eigenvalue problem. For a given polynomial, P , infinitely many linearizations exist and they can have widely varying eigenvalue condition numbers. We investigate the conditioning of linearizations from a vector space DL(P ) of penci...
متن کاملStructured eigenvalue condition numbers and linearizations for matrix polynomials
This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the penci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2007
ISSN: 0895-4798,1095-7162
DOI: 10.1137/050646202